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|Supervised learning
|

Notation
— Features X
— Targets y

— Predictions y
— Parameters @

Features

Feedback /
Target values

Program (“Learner”)

Characterized by
some “parameters” @

Procedure (using 6)
that outputs a prediction

Learning algorithm

Change 6
Improve performance




|Regression; Scatter plots
I
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» Suggests a relationship between x and y
* Regression: given new observed x"eW), estimate ynew)

(c) Alexander Ihler



| Nearest neighbor regression
I

“ “Predictor”:

o Given new features:
> Find nearest example
1l N y(new) = Return its val .
S . .- eturn its value
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» Find training datum x® closest to x"eW); predict y)

(c) Alexander Ihler



| Nearest neighbor regression
I

“Predictor”:
40r .
Given new features:
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> Find nearest example
R -

o Return its value
|- —— -
@© -
= —-—
o0 —
—_—
——
—-
I
0 Z'LO 20
Feature X

+ Find training datum x® closest to x("eW); predict y"
* Defines an (implicit) function f(x)
* "Form” is piecewise constant



| Nearest neighbor classifier
|

“Predictor”:

Given new features:
Find nearest example
1 Return its value
0
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(c) Alexander Ihler



| Nearest neighbor classifier
|

“Predictor”:

Given new features:
Find nearest example

1 Return its value

“Closest” training x?
Typically Euclidean distance:

d(x.x") = \/Z?(‘L? — x)?

X, !

(c) Alexander Ihler



| Nearest neighbor classifier
|

All points where we decide 1

All points where we decide 0

X, !




|Nearest neighbor classifier
|

\Voronoi tessellation:
Each datum is
assigned to a region, in
which all points are
closer to it than any
other datum

1 0
. Decision boundary:

5 1 0 Those edges across
which the decision
1 o (class of nearest
A 0 training datum)
changes

Nearest Nbr:
Piecewise linear boundary

(c) Alexander Ihler



| Nearest neighbor classifier
|

Nearest Nbr:

Class 1 Piecewise linear boundary

Class 0
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| More Data Points
|

X, |

(c) Alexander Ihler



|More Complex Decision Boundary
|

In general:
Nearest-neighbor classifier
produces piecewise linear
decision boundaries

v




K-Nearest Neighbor (kNN) Classifier

* Find the k-nearest neighbors to x in the data
— l.e., rank the feature vectors according to Euclidean distance
— select the k vectors which are have smallest distance to X

* Regression
— Usually just average the y-values of the k closest training examples

« Classification
— ranking yields k feature vectors and a set of k class labels
— pick the class label which is most common in this set (“vote”)
— classify x as belonging to this class

— Note: for two-class problems, if k is odd (k=1, 3, 5, ...) there will never be
any “ties”; otherwise, just use (any) tie-breaking rule

«  “Like” the optimal estimator, but using nearest k points to estimate p(y|x)

- “Training” is trivial: just use training data as a lookup table, and search
to classify a new datum



\kNN Decision Boundary

- Piecewise linear decision boundary

 Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points
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|kNN Decision Boundary
|

- Piecewise linear decision boundary

 Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points
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\kNN Decision Boundary

- Piecewise linear decision boundary

 Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points

K=25



|Error rates and K DA
|
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Predictive
Error

Error on Test Data

Error on Training Data

»
»

/ K (# neighbors)

K=1? Zero error!
Training data have been memorized...

Best value of K
(c) Alexander Ihler



\Complexny & Overfitting

- Complex model predicts all training points well

- Doesn’t generalize to new data points

« k=1 :perfect memorization of examples (complex)

«  k =m: always predict majority class in dataset (simple)
« Can select k using validation data, etc.
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K-Nearest Neighbor (kNN) Classifier

* Theoretical Considerations

— as k increases
* We are averaging over more neighbors
- the effective decision boundary is more “smooth”
— as m increases, the optimal k value tends to increase (as O(log(m)))

— k=1, mincreasing to infinity : error < 2x optimal

- Extensions of the Nearest Neighbor classifier

— Weighted distances d{x,«') — />, wy{aw; — 2%)?
* e.g., some features may be more |mportant others may be irrelevant

- Mahalanobis distance: d{z,z') = /(& — ') - S~ - (z — ')
— Fast search techniques (indexing) to find k-nearest points in d-space

— Weighted average / voting based on distance



| Curse of dimensionality
|

* Various phenomena that occur when analyzing
and organizing data in higher dimensions (e.g.
thousands)

— When d >> 1 volume of data increases so rapidly that
data becomes sparse

— The amount of data needed for statistical validity
grows exponentially with dimensionality

— E.g. when d >> 1, distances between points become
uniform



| Summary
I

+ K-nearest neighbor models
— Classification (vote)
— Regression  (average or weighted average)

* Piecewise linear decision boundary
— How to calculate

- Test data and overfitting
— Model “complexity” for knn
— Use validation data to estimate test error rates & select k



